How Live Can a Transactional Memory Be?∗

Rachid Guerraoui Michał Kapałka
February 2009 (updated: October 2009)

Abstract

Despite the large amount of work devoted so far to transac-
tional memories (TMs), little is known about their live-
ness. Yet, the liveness of a system conveys its robustness
and it is important to determine how live a TM can be.
In this paper, we consider a system where transactions
can be bogus or arbitrarily delayed and ask what can be
ensured for correct ones. We determine a precise bound-
ary between the liveness properties that can be ensured
by a TM in such a system and those that cannot. In par-
ticular, we show that ensuring local progress—a TM live-
ness property analogous to wait-freedom or starvation-
freedom in shared-memory implementations—is impos-
sible. Indeed, we show that global progress is in a precise
sense the strongest TM liveness property that a TM can
guarantee. This property is analogous to lock-freedom
for shared-memory objects and is indeed ensured by cer-
tain TM implementations.

1 Introduction

Transactional memory (TM) [15, 21] is a promising
paradigm that aims at bringing concurrent programming
to non-expert programmers. A TM allows processes
(threads) of an application to communicate by executing
lightweight, in-memory transactions. Each transaction
accesses shared data and then either commits or aborts.
When it commits, the transaction appears to the appli-
cation as if all its operations were executed
atomically, at
some single and unique point in time. When it aborts,
however, all the changes done to the shared state by the
transaction are rolled back and are never visible to other
transactions. The TM paradigm is considered as easy to
use as coarse-grained locking. It does also have some po-
tential for exploiting underlying multi-core architectures
as efficiently as hand-crafted, fine-grained locking, which
is often an engineering challenge. Not surprisingly, a
large body of work has been dedicated to implementing
the TM paradigm and reducing its overheads. To a large
extend, however, setting the theoretical foundations of
the TM concept has been neglected.

Some recent work has been nevertheless devoted to
formally defining the exact semantics of TM. More specifi-
cally, a correctness condition for TMs has been proposed
in [11], and the programming language level semantics
of specific classes of TM implementations has been deter-
mixed, e.g., in [23, 16, 1, 19, 18]. A closer look at those
papers, however, reveal that they all focus on safety, i.e.,
on what TMs should not do. Clearly, a TM that ensures
only a safety property can trivially be implemented by
blocking all operations or aborting all transactions. To be
meaningful, a TM has to ensure some liveness [2], i.e., a
guarantee about what should be done.

1.1 Liveness of a TM

In classical shared-memory systems, a liveness property
describes when a process that invokes an operation on
a shared object is guaranteed to return from this opera-
tion. For example, wait-freedom [13] ensures, intuitively,
that every process invoking an operation will eventually
return from this operation, even when other processes
are suspended or crashed. In a TM, the question of
liveness does not only apply to individual operations of
transactions—indeed, a process which transactions are
always aborted by a TM implementation, e.g., because
of conflicts, does not really make any progress, even if
it never blocks inside any operation. To make sense, a
TM liveness property should ensure transaction commit-
ment, not only operation termination.

Ideally, a TM would ensure that every process
that keeps executing transactions eventually commits a
transaction—a property that we call local progress and
that is similar in spirit to wait-freedom [13] or starvation-
freedom. Protecting transactions using a single global
(and fair) lock ensures local progress. Indeed, transac-
tions that execute sequentially encounter no conflicts: a
TM can easily guarantee that each of those transactions
commit. Yet, such a TM would not be resilient. A resilient
TM is, intuitively, one that does not force transactions to
wait for each other, thus allowing them to make progress
independently.

There are two main problems with non-resilient TMs.
First, a transaction that acquires a global lock and gets
suspended for a long time, e.g., due to preemption, page
faults, or I/O, will prevent all other transactions from
making any progress. Even worse, if the transaction en-
ters an infinite loop and keeps running forever, e.g., due
to a bug in the program or malicious behavior of some
process, then no transaction will ever commit thereafter.
Those issues may be important for many applications.
For instance, a time-critical transaction might need to commit as soon as possible, and so its progress should not be hampered by a low-priority transaction that is suspended or in the middle of some long computation.

Second, if applications are to scale to multi-core processors, Amdahl’s Law recommends to reduce their sequential parts. But if transactions wait for each other, then they contribute to those sequential portions of users’ programs, hampering scalability. Finer-grained locking can alleviate this problem, allowing more transactions to execute in parallel, but does not address the issue completely. Resilient TM implementations, which allow transactions to make progress independently, may thus provide better performance on future hardware with a big number of computing cores. Indeed, lock-free implementations of concurrent data structures, which could be considered inefficient when compared to lock-based ones on single-processor systems, have already entered the mainstream (e.g., being included in the Java standard library) because of their better scalability on modern hardware.

The motivation of this work is the question of what liveness property can be ensured by a TM beyond resilience, i.e., when transactions do not wait for each other.

1.2 Transaction failures

The classical way of modeling shared-memory systems in which processes can make progress independently, i.e., without waiting for each other, is to consider asynchronous systems in which processes can crash. When a process crashes, it does not perform any further action. Because of asynchrony, processes cannot detect crashes—they cannot distinguish a crashed process from a one that is just very slow or delayed. Therefore, any TM implementation that is resilient to crashes will, in a real system, allow transactions to make progress even if other transactions are suspended for a long time. (Recall that transactions are executed by processes; hence, if a process crashes while executing a transaction, so does the transaction.)

It is not obvious, however, that TMs that can ensure progress despite transaction crashes would also tolerate transactions that keep executing operations on shared data without ever attempting to commit. We call these parasite transactions. A priori, when the maximum transaction length is not bounded, parasite transactions can be considered more harmful than crashed ones, because they keep using resources and may cause other transactions to abort. On the other hand, parasite transactions can also be thought of as easier to deal with than crashed ones, because a crashed process cannot actively cooperate and, e.g., be requested to clean up its data or release some of its locks. It is thus desirable to consider two kinds of failures of transactions independently: crashes of transactions (i.e., of processes that execute those transactions) and parasite transactions.

This paper is the first formal study of the overall liveness of TM implementations: we ask how much liveness a TM implementation can guarantee in an asynchronous system with transaction failures, and make a first step towards answering this question.

1.3 Challenge

To illustrate the challenge underlying handling faulty (i.e., crashed or parasite) transactions, consider the following example, depicted in Figure 1. Consider two processes, \(p_1\) and \(p_2\), that execute transactions \(T_1\) and \(T_2\), respectively. Transaction \(T_1\) reads value 0 from a shared variable \(x\) and then gets suspended for a long time. Then, a transaction \(T_2\) also reads value 0 from \(x\), and attempts to write value 1 to \(x\) and commit. Because of asynchrony, processes (and their transactions) can be arbitrarily delayed. Hence, process \(p_2\) does not know whether \(T_1\) has crashed or is just very slow, and so, in order to ensure progress of transaction \(T_2\), \(p_2\) might eventually commit \(T_2\). But then, if transaction \(T_1\) attempts to write value 1 to \(x\), \(T_1\) cannot commit, as this would violate the correctness of the TM (opacity [11] or even serializability [20, 4]). A similar situation can arise if \(T_1\) keeps repeatedly reading variable \(x\) instead of being suspended. If the maximum length of a transaction is not known, process \(p_2\) cannot say whether \(T_1\) is a parasite transaction or not, and thus may eventually commit \(T_2\), forcing \(T_1\) to be aborted. A situation in which transaction \(T_1\) has to abort can repeat any number of times, which suggests that implementing local progress with crashed or parasite transactions is impossible. We show in this paper that this is indeed the case.\(^2\)

The question whether a given liveness property, such as local progress, can be implemented by a TM in a system in which transactions can crash and/or be parasite

\(^2\)\text{The progress properties of obstruction-free and lock-based TMs, formalized in [10, 12], are, strictly speaking, safety properties. They describe when precisely a particular (single) transaction must commit, assuming certain liveness (namely wait-freedom) of individual operations of this transaction.}

\(^3\)\text{It has been pointed out in [8] that ensuring a property analogous to local progress is possible with transaction failures. However, the (informal) model considered in [8] is fundamentally different than ours, in that it allows a TM to control the user application, and, e.g., re-execute portions of a program that uses the TM or simulate an execution of a given transaction, thus enabling the TM to predict what the transaction may do. We believe that this model is too strong.}
is, clearly, interesting. Even more interesting, however, is to ask what is the strongest liveness property that a TM can ensure despite transaction failures. To answer such a question, one needs a theoretical framework that allows expressing and comparing TM liveness properties in a simple way.

1.4 Contributions

Our first contribution is a formal framework for reasoning about TM liveness. Roughly speaking, we define a TM liveness property to be a function that, for every set of concurrent transactions, specifies which transactions from this set must eventually commit. This definition can capture “high-level” TM liveness properties—those that do not depend on implementation details of a given TM, the structure of transactions, or the exact interleaving of steps of processes. We will motivate this model in Section 3. It is worth noting, however, that all liveness properties that are ensured by current TMs, such as OSTM [9], DSTM [14], RSTM [17], NZTM [22], TL2 [5], TinySTM [7], and SwissTM [6], can be defined in our framework, as well as many TM liveness properties that are thought of as useful in practice (e.g., local progress or priority-based properties).

We then identify, within our framework, two partially overlapping classes of TM liveness properties: nonblocking and \((n - 1)\)-prioritizing properties, where \(n\) is the number of processes in the system. Intuitively:

1. A TM liveness property is nonblocking if it ensures progress of any transaction that runs alone, i.e., without any concurrent non-faulty transactions.

2. A TM liveness property is \((n - 1)\)-prioritizing if it specifies, for some execution involving infinitely many transactions, a set of at most \(n - 1\) transactions that have high priority. The property then requires that, in this specific execution, at least one of the high-priority transactions must commit (unless all of them are faulty).

For example, local progress is an \((n - 1)\)-prioritizing property because in any execution involving any transaction \(T\), the single-element set \(\{T\}\) is indeed a set of high-priority transactions—local progress guarantees that if \(T\) is not faulty then \(T\) will eventually commit. Consider also TM liveness properties \(L(1), L(2), \ldots\), defined as follows. Assume that transactions are assigned unique identifiers. Property \(L(1)\) requires that, in every execution, the nonfaulty transaction with the lowest id eventually commits. Similarly, \(L(2)\) requires that one of the two non-faulty transactions with the lowest ids eventually commits. And so on. All properties \(L(1), \ldots, L(n - 1)\) are \((n - 1)\)-prioritizing, while \(L(n), L(n + 1), \ldots\), are not. However, a property that simply says that some non-faulty transaction, or some arbitrary \(k\) transactions, must eventually commit is not \((n - 1)\)-prioritizing because it treats all transactions equally—it does not specify any high-priority ones. Therefore, \((n - 1)\)-prioritization is all about choice—how constrained is a TM when it must choose which of the concurrent transactions to abort (as in the example from Figure 1).

We then prove the following results, summarized in Figure 2:

1. Every TM liveness property that is both nonblocking and \((n - 1)\)-prioritizing, e.g., local progress, is impossible to implement in a system with crashed transactions or parasite transactions.

2. Every TM liveness property that is not \((n - 1)\)-prioritizing can be implemented in a system with crashed and parasite transactions.

In order to prove (2), we first identify a TM liveness property that we call global progress. Global progress—alogous to lock-freedom in shared-memory implementations—guarantees, intuitively, that at any point in time some transaction makes progress. Then, we prove that:

1. Every TM liveness property that is not \((n - 1)\)-prioritizing is weaker than global progress. That is, every TM implementation that ensures global progress ensures also any other non-\((n - 1)\)-prioritizing TM liveness property.

2. Global progress can be implemented in a system with faulty transactions.

There are indeed TM implementations that ensure global progress in a system with faulty transactions, e.g., OSTM [9]—however, we do not know whether this has been formally proved. We give then in this paper, for completeness, a TM algorithm that (provably) ensures global progress.

Our results imply that global progress is the strongest nonblocking TM liveness property that can be implemented in a system with faulty transactions—a result interesting in its own right. Hence, TM implementations such as OSTM and the TM we show in this paper can be thought of as optimal with respect to liveness, at least within our framework for expressing TM liveness properties.
To summarize, this paper is the first step towards determining how much liveness a TM implementation can ensure in an asynchronous system. We provide a theoretical framework for reasoning about TM liveness properties, and then devise the precise boundary between those TM liveness properties that are implementable in a system with crashed or parasite transactions, and those ones that are impossible to implement in such a system.

1.5 Roadmap

The rest of the paper is organized as follows. Section 2 defines our TM system model. Section 3 defines the notion of a TM liveness property, gives several examples of TM liveness properties (some ensured by existing TM implementations), and defines the notions of non-blocking and \((n - 1)\)-prioritizing properties. Section 4 proves that it is impossible to implement any non-blocking \((n - 1)\)-prioritizing TM liveness property in a system with crashed or parasite transactions. Section 5 shows how to implement any non-\((n - 1)\)-prioritizing TM liveness property in a system with any faulty transactions. Finally, Section 6 discusses our results and provides some open questions.

2 Model

Processes and transactions We assume an asynchronous, shared memory system of \(n\) processes \(p_1, \ldots, p_n\) that communicate by executing transactions. Each transaction has a unique transaction identifier from infinite set \(T = \{T_1, T_2, \ldots\}\). We say that a transaction \(T_i\) (i.e., a transaction with identifier \(T_i\)) performs an action, meaning that some process \(p_i\) performs this action within the transactional context of \(T_i\).

Each transaction \(T_i\) may perform any number of read and write operations on transactional variables (or t-variables, for short). Let \(x\) be any t-variable and \(T_i\) be any transaction. We say that \(T_i\) reads (value \(v\)) from \(x\) if \(T_i\) executes operation read on \(x\), and is returned value \(v\) from this operation. We say that \(T_i\) writes (value \(v\)) to \(x\), if \(T_i\) executes operation write\((v)\) on \(x\).

Transaction \(T_i\) may also issue special operations: \(tryC(T_i)\) and \(tryA(T_i)\), which are requests to, respectively, commit or abort \(T_i\). Operation \(tryC(T_i)\) returns value \(C_i\) if committing \(T_i\) has been successful, or \(A_i\) if \(T_i\) has been aborted (committing \(T_i\) has failed). Operation \(tryA(T_i)\) always returns value \(A_i\).

The special value \(A_i\) (\(i = 1, 2, \ldots\)) can also be returned by any operation executed on any t-variable by transaction \(T_i\). Whenever \(T_i\) is returned value \(A_i\) from any operation (including \(tryC(T_i)\) except for \(tryA(T_i)\)), we say that \(T_i\) has been forceably aborted—indeed, \(T_i\) is then forced by the TM to abort even though \(T_i\) did not request that (by invoking \(tryA(T_i)\)).

When a transaction \(T_i\) is forceably aborted, the operations of \(T_i\) on t-variables are rolled back by the TM. Then, \(T_j\) may retry its computations. Clearly, each time \(T_i\) is forceably aborted, \(T_i\) may perform different operations because \(T_j\) may observe different states of t-variables.

When a transaction \(T_i\) returns value \(C_i\) from operation \(tryC(T_i)\), or value \(A_i\) from operation \(tryA(T_i)\), we say that \(T_i\) is completed. A completed transaction does not perform any further actions. A transaction that is not (yet) completed is called pending.

An event is any invocation or response of an operation issued by any transaction (i.e., by the process executing this transaction). A response event that returns value \(C_k\) or \(A_k\) (for any \(k\)) is called, respectively, a commit event and an abort event of transaction \(T_k\).

TM implementation A TM implementation is any algorithm that implements the operations issued by transactions, using a number of base objects (e.g., provided in hardware). We call the operations executed on base objects steps.

The TM algorithm is executed by the same processes that execute transactions. That is, whenever a process \(p_i\) invokes an operation on any t-variable, or an operation \(tryA(T_k)\) or \(tryC(T_k)\), within a transaction \(T_k\), \(p_i\) follows the TM algorithm by executing corresponding steps until \(p_i\) returns from the operation.

Histories Let \(M\) be any TM implementation. A history (of \(M\)) is a sequence of all (1) events that were issued on, or received from, \(M\) by all transactions, and (2) steps of \(M\) executed by processes, in a given run of an application. We assume here that every event or step \(e\) can be assigned a unique point in time when \(e\) was executed. Hence, all events and steps in a given run can be indeed totally ordered according to their execution time. (If several events or steps are executed at the same time, e.g., on multi-processor systems, they can be ordered arbitrarily.)

Let \(H\) be any history. We denote by \(H[p_i]\) and \(H[T_k]\) the longest subsequence of \(H\) that contains only events and steps of, respectively, process \(p_i\) and transaction \(T_k\). We say that a transaction \(T_k\) is in \(H\), and write \(T_k \in H\), if \(H[T_k]\) is a non-empty sequence.

Let \(T_i\) be any transaction in history \(H\) and \(t\) be any time. We say that \(T_i\) has started by \(t\) (in \(H\)) if the first event of \(T_i\) in \(H\) is executed before time \(t\). We say that \(T_i\) is active at \(t\), if (1) \(T_i\) has started by \(t\), and (2) either (a) the latest event of \(T_i\) that is executed before \(t\) is not a commit or abort event of \(T_i\), or (b) some event of \(T_i\) is executed after \(t\) in \(H\).

Let \(T_i\) and \(T_k\) be any two transactions in history \(H\). We say that \(T_i\) precedes \(T_k\) (in \(H\)), if (1) there exists a time after which \(T_i\) is never active in \(H\), and (2) the last commit or abort event of \(T_i\) precedes the first event of \(T_k\). If neither \(T_i\) precedes \(T_k\), nor \(T_k\) precedes \(T_i\), then we say that \(T_i\) and \(T_k\) are concurrent (in \(H\)).

We assume that every history \(H\) is well-formed: (1) every transaction \(T_k \in H\) is executed only by a single process (i.e., \(\{(H[p_i]\mid T_k\text{ is non-empty only for one process } p_i\}\)), (2) no two transactions executed in \(H\) by the same process
are concurrent, and (3) if a transaction $T_k \in H$ is completed, then no event or step follows a response event of operation $\text{try}A(T_k)$ or a commit event of T_k in $H|T_k$.

Sub-transactions Let H be any history of a TM implementation M and T_k be any transaction in H. We divide T_k into one or more sub-transactions, denoted by T_k^1, \ldots, T_k^n, that represent the operations executed by T_k during subsequent retries of T_k. That is, T_k^1 is the subsequence of $H|T_k$ from the first event of T_k until the first commit or abort event of T_k (if any), T_k^2 is the subsequence of $H|T_k$ from the first event of T_k issued after the first abort event of T_k until a commit event or the second abort event of T_k (if any), and so on.

We will apply the same notation and terminology to sub-transactions as defined for transactions. Note that every sub-transaction of any transaction T_k, except the last sub-transaction of T_k, must be pending and forcefully aborted.

Correctness condition We assume that every TM implementation M ensures opacity [11]. Intuitively, this means that in every history H of M, every sub-transaction (of every transaction) appears as if it was executed at some single, unique point in time between its first and its last event. In particular, this means that every sub-transaction in H (even an aborted one) observes a consistent state of the system and does not observe any changes done by any aborted sub-transaction.

Crashed, parasite and correct transactions A system is crash-prone if any process in this system can, at any time, fail by crashing. Once a process p_i crashes, p_i does not perform any further actions. A system in which no process ever crashes is called crash-free.

We say that a transaction T_k crashes in a history H, if the process executing T_k in H crashes at some time at which T_k is active in H.

Let H be any history. We say that a transaction $T_k \in H$ is infinite, if sub-history $H|T_k$ is infinite, i.e., if T_k executes infinitely many steps or events in H. Clearly, there can be at most n infinite transactions in H.

Intuitively, a parasite transaction is a transaction that keeps executing operations but, from some point in time, never attempts to complete (by invoking operation $\text{try}C$ or $\text{try}A$). Consider any history H and any infinite transaction T_k in H. If the last sub-transaction of T_k executes infinitely many operations, then T_k is clearly parasite. Indeed, T_k gets to execute infinitely many operations without being forcefully aborted, but T_k does not complete. If T_k invokes operation $\text{try}C(T_k)$ infinitely many times, then T_k is clearly not parasite. Consider, however, a situation in which T_k is infinite and does not invoke $\text{try}C(T_k)$ infinitely many times, but T_k is either blocked inside some operation infinitely long or T_k is forcefully aborted infinitely many times. Then, looking just at history H, we cannot say whether T_k is parasite, or T_k is simply starving. Indeed, since the TM did not allow T_k to execute infinitely many operations without any forceable abort, and since the maximum number of operations of a given transaction is not known, we do not know whether T_k, if given a chance, would eventually attempt to complete.

Therefore, for every infinite history H (of any TM implementation) we specify a set $\text{Parasite}(H)$ of parasite transactions, such that, for every transaction T_k in $\text{Parasite}(H)$, T_k is an infinite transaction in H, and T_k does not invoke operation $\text{try}C(T_k)$ infinitely many times in H. We assume that the maximum number of operations a single sub-transaction can execute is not known.

That is, a TM can reliably determine if a transaction T_i is parasite only by letting T_i execute infinitely many operations in its (last) sub-transaction.

A system S is called fault-prone if S is crash-prone or S can have parasite transactions.

Let H be any history. We say that a transaction $T_k \in H$ is correct in H if either (1) T_k is completed, or (2) sub-history $H|T_k$ is infinite, but T_k is not a parasite transaction (i.e., $T_k \notin \text{Parasite}(H)$).

3 TM Liveness

Intuitively, a TM liveness property describes which of the transactions in a history H have to be (eventually) completed. A base of our formal definition of a TM liveness property are the following intuitive requirements, which should be satisfied by every TM liveness property L:

1. Property L should be indeed a liveness property. That is, L can be violated only in infinite histories, and only by transactions that are pending in those histories. In particular, every history in which all transactions are completed must ensure L.

2. Property L can only restrict correct transactions. Indeed, progress can be ensured only for those transactions that execute sufficiently many steps (e.g., do not crash), and that invoke operation $\text{try}C$ sufficiently many times (or invoke operation $\text{try}A$ once).

We also focus in this paper on high-level TM liveness properties, which do not depend on implementation details of a TM or on conflicts between transactions. Those properties can be ensured by many TMs of different internal design, and so relying on those properties in users’ applications should not hamper the portability of those applications between TM implementations. Moreover, ensuring progress regardless of what conflicts transactions encounter is important because conflicts are often unavoidable. This is especially the case for false conflicts, which are caused by the internal mechanisms of a TM and thus are even more difficult to avoid at the application level.

3Sub-transactions are not nested transactions. For simplicity, we do not consider nesting of transactions within our model.
There are indeed progress properties that depend on conflicts between transactions, e.g., strong and weak progressiveness [12]. Those are safety properties that specify when precisely a TM is allowed to forcefully abort a transaction. Often, however, a high-level TM liveness property can be ensured together with a progress property within the same TM implementation. For example, a TM may guarantee that transactions are forcefully aborted only if they have encountered a conflict since their last forceable abort (if any), while ensuring global progress for all transactions, even in high-contention scenarios. TM liveness properties can also easily be combined with various heuristics that aim at reducing contention between transactions. This is because a TM liveness property guarantees eventual progress. A TM is thus free to forcefully abort or delay a transaction \(T_i \) many times, e.g., in order to reduce contention, even if the TM liveness property ensures progress for \(T_i \). Transaction \(T_i \) must be able to complete, but this can happen after some, possibly long, time.

In principle, a TM liveness property can be a function of some characteristics of a transaction. For example, a TM could give higher priority to transactions that access small number of t-variables, or that write some important data. However, giving priorities to transactions is rather an application-specific task. Hence, we assume that those priorities are encoded in transaction identifiers from set \(T \), which are given to transactions by an application, and TM liveness properties are functions of those identifiers.

In the following sections, we give a definition of the notion of a TM liveness property and illustrate it with a series of examples. Then, we define the different classes of TM liveness properties that we consider in this paper.

3.1 Definition of TM Liveness

Let \(H \) be any history and \(t \) be any time. Let \(t' \) be the nearest time after \(t \) (if any) at which no transaction is active. (Time \(t' \) can be thought of as the next quiescence time after \(t \).) Consider the set \(Q \) of transactions in \(H \) that are active at some time between \(t \) and \(t' \). Observe first that all transactions in \(Q \) are directly or transitively concurrent (we formalize this notion in the next paragraphs). We will call the transactions in set \(Q \) a concurrent group at time \(t \).

Roughly speaking, a TM liveness property specifies which correct transactions from any concurrent group \(Q \) in a history \(H \) must be completed. We define a TM liveness property in the following way:

Definition 1 A TM liveness property \(L \) is any function \(L : 2^T \rightarrow 2^{2^T} \) such that \(S \subseteq C \) for every set \(S \subseteq L(C). \)

Intuitively, if \(Q \) is the set of correct transactions in the concurrent group at some time \(t \) in a history \(H \), and \(L \) is a TM liveness property, then \(L(Q) \) is a set of subsets \(Q_1, Q_2, \ldots \) of \(Q \). In order to ensure \(L \), all transactions from some set \(Q_m \in L(Q) \) must be completed in \(H \). (Transactions that are not in \(Q_m \) may be either completed or pending.)

More formally, let \(H \) be any history and \(t \) be any point in time. We denote by \(\text{Concurr}_H(t) \), and call concurrent group at time \(t \), the minimal set \(C \) of transactions defined recursively in the following way:

1. If a transaction \(T_i \in H \) is active at time \(t \), then \(T_i \in \text{Concurr}_H(t) \), and
2. If a transaction \(T_k \in H \) is active at some time after \(t \) and is concurrent to some transaction in \(\text{Concurr}_H(t) \), then \(T_k \in \text{Concurr}_H(t) \).

Let \(H \) be any history and \(Q \) be any set of transactions. We denote by \(\text{Correct}_H(Q) \) the set of those transactions in \(Q \) that are correct in \(H \). We denote by \(\text{Completed}_H(Q) \) the set of those transactions in \(Q \) that are completed in \(H \).

Definition 2 A history \(H \) ensures a TM liveness property \(L \) if, for every time \(t \), if \(Q = \text{Correct}_H(\text{Concurr}_H(t)) \) then \(\text{Completed}_H(Q) \supseteq C \) for some set \(C \subseteq L(Q) \).

Definition 3 A TM implementation \(M \) ensures a TM liveness property \(L \) if every history \(H \) of \(M \) ensures \(L \).

In order to compare any two TM liveness properties \(L \) and \(L' \), we define when \(L \) is weaker than \(L' \). The “weaker than” relation is a partial order on the set of all TM liveness properties. If \(L \) is weaker than \(L' \), then any TM implementation that ensures \(L' \) also ensures \(L \).

Definition 4 Let \(L \) and \(L' \) be any two TM liveness properties. We say that \(L \) is weaker than \(L' \) (and \(L' \) is stronger than \(L \) if every history that ensures \(L' \) also ensures \(L \).

3.2 Examples of TM Liveness Properties

We give here examples of common TM liveness properties. We prove that our definitions of those properties, expressed within our formal framework, do indeed capture the common intuition behind those properties (Theorems 5, 6, and 7). We also give examples of TM implementations that ensure those properties, possibly under some assumptions (e.g., crash-free system, or no parasite transactions).

Local Progress Intuitively, a TM implementation \(M \) ensures local progress (analogous to wait-freedom for shared-memory objects, when considered in a crash-prone system), if in every infinite history of \(M \) every correct transaction eventually completes. More formally, local progress is the function

\[
L_i(C) = \{ C \}.
\]

Every TM liveness property is weaker than \(L_i \). As we discussed in the introduction, implementing a TM that guarantees local progress in any fault-prone system is impossible. That is, local progress inherently requires some form of indefinite blocking of transactions.
Ensuring local progress in a crash-free system without parasite transactions is possible (e.g., a simple TM that synchronizes all transactions using a single global lock and thus never forceably aborts a transaction). However, none of the major existing TM implementations ensures local progress.

Theorem 5 An infinite history \(H \) ensures \(L_1 \) if, and only if, every correct transaction in \(H \) is completed in \(H \).

Proof. \((\Rightarrow)\) Let \(H \) be any history that ensures \(L_1 \) and \(T_k \) be any correct transaction in \(H \). Let \(t \) be any time at which \(T_k \) is active in \(H \), and \(C = \text{Correct}_H(\text{Concurr}_H(t)) \). Clearly, \(T_k \) must be in set \(C \). Because \(L_1(C) = \{C\} \), \(\text{Completed}_H(C) \) must be the entire set \(C \), and so \(T_k \in C \) must be completed in \(H \).

\((\Leftarrow)\) Let \(H \) be any history in which every correct transaction is completed. Let \(t \) be any time and \(C = \text{Correct}_H(\text{Concurr}_H(t)) \). Because every transaction in \(C \) is completed, \(\text{Completed}_H(C) = C \in L_1(C) \).

Global progress Intuitively, a TM implementation \(M \) ensures global progress (analogous to lock-freedom for shared-memory objects), if in every infinite history of \(M \), in which there is a pending correct transaction, there are infinitely many completed transactions. More formally, global progress is the function

\[
L_g(C) = \big\{\{T_i\}, \{T_j\}, \ldots\big\},
\]

where \(T_i, T_j, \ldots \) are all elements of set \(C \).

In a crash-prone system, global progress is ensured by so-called lock-free TM implementations such as OSTM [9]. We give a simple TM implementation that guarantees global progress in Section 5. In a crash-free system, global-progress could be ensured by a lock-based TM implementation; however, we do not know of any such TM implementations such as TL2 [5], TinySTM [7], or SwissTM [6] allow livelock situations—scenarios in which two concurrent correct transactions are pending forever.

Theorem 6 An infinite history \(H \) ensures \(L_g \) if, and only if, whenever there is a pending correct transaction in \(H \), then infinitely many transactions are completed in \(H \).

Proof. \((\Rightarrow)\) Let \(H \) be any infinite history that ensures \(L_g \). Assume that there is a pending correct transaction \(T_k \) in \(H \). By contradiction, assume that after some time \(t \) no transaction completes. Because \(T_k \) is pending, set \(Q = \text{Correct}_H(\text{Concurr}_H(t')) \), where \(t' > t \), contains at least transaction \(T_k \). Hence, by \(L_g \), some transaction from \(Q \) must be completed in \(H \)—a contradiction.

\((\Leftarrow)\) Let \(H \) be any infinite history. If \(H \) has no pending correct transaction, then \(H \) trivially ensures \(L_g \). Assume then that \(H \) contains a pending correct transaction \(T_k \) and there are infinitely many completed transactions in \(H \). But then, for every time \(t \), set \(Q = \text{Correct}_H(\text{Concurr}_H(t)) \) contains either (1) only completed or incorrect transactions, or (2) some pending correct transactions and infinitely many completed transactions. In both cases property \(L_g \) is ensured.

Solo progress Intuitively, a TM implementation \(M \) ensures solo progress (analogous to obstruction-freedom for shared-memory objects), if in every infinite history \(H \) of \(M \) every correct transaction that eventually runs alone for sufficiently long time commits. The classical meaning of the term “alone” (as used by obstruction-freedom [3]) is “with no other transaction taking steps concurrently”. Parasite transactions, however, have never been considered before in this context. In the following definition, we assume that a transaction \(T_k \) is alone if \(T_k \) is concurrent only to incorrect transactions. In a system without parasite transactions, this is equivalent to saying “with no transaction other than \(T_k \) taking steps concurrently” (as we prove below). More formally, solo progress is the following function:

\[
L_s(C) = \begin{cases}
\{C\} & \text{if } |C| = 1 \\
\{\emptyset\} & \text{otherwise.}
\end{cases}
\]

In a crash-prone system without parasite transactions, solo progress is ensured by TM implementations such as DSTM [14], RSTM [17] (with its nonblocking backend), or NZTM [22]. In a crash-free system without parasite transactions, solo progress is ensured by most (if not all) lock-based TM implementations, e.g., TL2 [5], TinySTM [7], or SwissTM [6]. (In fact, the progress semantics of those TMs, as formalized in [12], is stronger than solo progress in a crash-free system.) However, only lazy-acquire TMs, such as TL2, ensure solo progress with parasite transactions.

Theorem 7 An infinite history \(H \) without parasite transactions ensures property \(L_s \) if, and only if, every correct transaction in \(H \) that from some point in time runs alone, i.e., without other transactions concurrently executing steps, eventually completes.

Proof. \((\Rightarrow)\) Let \(H \) be any infinite history without parasite transactions that ensures property \(L_s \). By contradiction, assume that there is a correct transaction \(T_k \in H \), such that \(T_k \) executes steps alone from some time \(t \) but \(T_k \) is pending. That is, no transaction other than \(T_k \) executes any step after \(t \). But then, no transaction that is concurrent to \(T_k \) is correct, and so \(\text{Correct}_H(\text{Concurr}_H(t)) = \{T_k\} \). Hence, because \(L_s(\{T_k\}) = \{\{T_k\}\} \), \(T_k \) must be completed in \(H \)—a contradiction.

\((\Leftarrow)\) Let \(H \) be any infinite history without parasite transactions. If every correct transaction is completed in \(H \), then \(H \) trivially ensures \(L_s \). Assume then that there is a pending correct transaction \(T_k \) in \(H \) and that, for every time \(t \), some transaction other than \(T_k \) takes a step after \(t \). But then, for every time \(t \) after \(T_k \) starts, set \(\text{Correct}_H(\text{Concurr}_H(t)) \) contains some transaction other than \(T_k \), and so \(L_s \) is ensured.
however, encode some priority scheme into those identifiers, thus giving preference to some transactions. For instance, let \ll be any total order on set T. Let us define the following TM liveness property:

$$L_{\ll,1}(C) = \{T_i\},$$

where $T_k \ll T_i$ for every transaction $T_i \in C$ different than T_k. Intuitively, $L_{\ll,1}$ ensures progress for the transaction with the lowest transaction id (according to order \ll) from a given concurrent group.

Consider also the following TM liveness property:

$$L_{\ll,n}(C) = \begin{cases}
\{C\} & \text{if } |C| \leq n \\
\{\{T_{\sigma_1}\}, \ldots, \{T_{\sigma_n}\}\} & \text{otherwise},
\end{cases}$$

where $T_{\sigma_1} \ll \ldots \ll T_{\sigma_n}$ and $T_{\sigma_n} \ll T_i$ for every transaction $T_i \in C$. Intuitively, $L_{\ll,n}$ ensures progress for one of the n transactions with the lowest id from a given concurrent group.

3.3 Classes of TM Liveness Properties

Intuitively, we say that a TM liveness property L is nonblocking if L ensures progress for every transaction that runs alone, i.e., with no concurrent correct transactions. More formally:

Definition 8 We say that a TM liveness property L is nonblocking if, for every transaction $T_i \in T$, $L(\{T_i\}) = \{\{T_i\}\}$.

Properties that are not nonblocking are called blocking. Local progress, global progress, and an solo progress, as well as properties $L_{\ll,1}$ and $L_{\ll,n}$ for every total order \ll on set T, are all nonblocking TM liveness properties.

Intuitively, every $(n-1)$-prioritizing TM liveness property L is characterized by an infinite set $C \subseteq T$ and a subset $P \subseteq C$ of size $n-1$. Then, if transactions in set C are correct and (indirectly) concurrent in some history H (i.e., $\text{Correct}_H(\text{Concurr}_H(t)) \subseteq C$ at some time t), then for history H to ensure L at least one of the transactions in set P must be completed in H. In a sense, P is a set of transactions with higher priority, and one of those transactions has to complete in the (single) scenario described by set C.

More formally, let L be any TM liveness property.

Definition 9 We say that L is $(n-1)$-prioritizing, if there exists an infinite subset C of set T and a subset P of C of size $n-1$, such that, for every non-empty set S in $L(C)$, $P \cap S \neq \emptyset$.

Local progress and property $L_{\ll,1}$ (for any total order \ll on set T) are $(n-1)$-prioritizing. Global progress, solo progress, and property $L_{\ll,n}$ are not $(n-1)$-prioritizing.

4 Impossibility Result

In this section, we prove that TM liveness properties that are nonblocking and $(n-1)$-prioritizing, such as local progress, are impossible to implement in any fault-prone system, i.e., in a system with crashes and/or parasite transactions (Theorem 11). We start by proving the following lemma, which says, intuitively, that a process executing infinitely many transactions can block progress of all other processes, if the TM implementation ensures any nonblocking TM liveness property.

Lemma 10 For every TM implementation M that ensures any nonblocking TM liveness property in any fault-prone system, and for every pair of sets P and C, where $P \subseteq C \subseteq T$, $|C| = \infty$ and $|P| = n-1$, there exists an infinite history H of M and a time t such that $\text{Correct}_H(\text{Concurr}_H(t)) = C$ and all transactions from set P are correct and pending in H.

Proof. Let M be any TM implementation that ensures some nonblocking TM liveness property L in any fault-prone system S. Let P and C be any sets such that $P \subseteq C \subseteq T$, $|C| = \infty$, and $|P| = n-1$. (Recall that n is the number of processes). Denote by σ any one-to-one function from the set of natural numbers to set C. For simplicity of notation, but without loss in generality, we will assume in the following that $\sigma(k) = k$ for $k = 1, \ldots, n-1$ and that $P = \{T_1, \ldots, T_{n-1}\}$.

We consider two cases: when system S is crash-prone and when S have parasite transactions. In each case we show an infinite history H in which every transaction from set P is correct, pending, and concurrent to all transactions from set C.

Case 1: S is a crash-prone system Consider a history H of M generated in the following execution (initially, $k = n; x$ is some t-variable initialized to 0):

1. Transactions T_1, \ldots, T_{n-1} read x one by one, i.e., each transaction T_i, $i = 2, \ldots, n-1$, invokes operation read on x after T_{i-1} returns from its operation read on x.

2. Transaction $T_{\sigma(k)}$ reads some value v from t-variable x and writes value $1 - v$ to x. Then, $T_{\sigma(k)}$ attempts to commit, i.e., executes operation $\text{tryC}(T_{\sigma(k)})$. Whenever $T_{\sigma(k)}$ is forcefully aborted, $T_{\sigma(k)}$ retries the same operations until it commits. No transaction executes steps concurrently to $T_{\sigma(k)}$.

3. Those transactions from set $\{T_1, \ldots, T_{n-1}\}$ that were not forcefully aborted in step 1 write value $1 - v$ to x and attempt to commit one by one. If all of them are forcefully aborted, go back to step 1 with $k \leftarrow k+1$.

Assume that every transaction T_i, $i = 1, \ldots, n-1$, is executed by process p_i, and all transactions $T_{\sigma(k)}$, $k = n, n+1, \ldots$, are executed by process p_n in H. Assume also that no transaction crashes in H.

We prove first that the above algorithm cannot be blocked in step 1 or 3, i.e., that no transaction T_i, $i = 1, \ldots, n-1$, can be blocked by M inside its read or write operation on x, or inside operation $\text{tryC}(T_i)$, infinitely long. Assume otherwise—that some transaction T_i, $1 \leq$
i \leq n - 1, invokes an operation \text{op}_{i}, executes infinitely many steps, but never receives a response event from \text{op}. Consider a history \(H'\) identical to \(H\) except that every transaction \(T_k, k = 1,\ldots,n - 1\) and \(k \neq i\), crashes in \(H'\) just before \(T_i\) invokes operation \text{op}. Hence, there is some time \(t\) at which \(T_i\) is the only correct transaction in \(H'\), i.e., \(\text{Correct}_{H'}(\text{Concurr}_{H'}(t)) = \{T_i\}\). Then, because \(M\) ensures \(L\) and \(L(\{T_i\}) = \{\{T_i\}\}\), \(T_i\) must be completed in \(H'\). But process \(p_i\), which executes \(T_i\), cannot distinguish between histories \(H\) and \(H'\), and so \(T_i\) cannot be pending in \(H\)—a contradiction.

Assume then, by contradiction, that, for some value \(k\), \(k \geq n\), transaction \(T_{\sigma(k)}\) is pending in \(H\). Then, no transaction \(T_i, i = 1,\ldots,n - 1\), issues any event or step after the first event of \(T_{\sigma(k)}\) in \(H\). Let \(H'\) be a history that is identical to \(H\) but in which all transactions \(T_1,\ldots,T_{n-1}\) crash just before the first event of \(T_{\sigma(k)}\). But then, at some time \(t\), \(T_{\sigma(k)}\) is the only correct transaction in \(H'\), i.e., \(\text{Correct}_{H'}(\text{Concurr}_{H'}(t)) = \{T_{\sigma(k)}\}\). Hence, as \(M\) ensures \(L\) and \(L(\{T_{\sigma(k)}\}) = \{\{T_{\sigma(k)}\}\}\), \(T_{\sigma(k)}\) must be completed in \(H'\). But process \(p_n\) cannot distinguish between histories \(H\) and \(H'\), and so \(T_{\sigma(k)}\) must also be completed in \(H\)—a contradiction.

Finally, assume, by contradiction, that some transaction \(T_m, 1 \leq m \leq n - 1\), commits. Denote by \(T_{m}'\) the last (committed) sub-transaction of \(T_m\). Let \(T_{\sigma(u)}\) be the latest transaction \(T_{\sigma(k)}, k \geq n\), that precedes \(T_{m}'\), and let \(v_{w}\) be the value written to \(q\)-variable \(x\) by \(T_{\sigma(u)}\). Until \(T_{m}'\) returns from its read operation on \(x\), there is no concurrent transaction that writes to \(x\). Hence, because \(M\) ensures opacity and because the future operations of transactions are not known in advance in the TM, \(T_{m}'\) must read \(v_{w}\) from \(x\). Then, \(T_{m}'\) writes value \(1 - v_{w}\) to \(x\) and commits.

Consider transaction \(T_{\sigma(u+1)}\), which is concurrent to sub-transaction \(T_{m}'\) of \(T_m\). We already proved that \(T_{\sigma(u+1)}\) must be committed in \(H\). Denote by \(T_{m}'_{\sigma(u+1)}\) the last sub-transaction of \(T_{\sigma(u+1)}\). Both \(T_{m}'\) and \(T_{m}'_{\sigma(u+1)}\) read value \(v_{w}\) from \(x\) and write value \(1 - v_{w}\) to \(x\), and no transaction concurrent to \(T_{m}'\) or \(T_{m}'_{\sigma(u+1)}\) writes back value \(v_{w}\) to \(x\).

Hence, there is no way to order sub-transactions \(T_{m}'\) and \(T_{m}'_{\sigma(u+1)}\), and so opacity is violated—a contradiction.

Case 2: S is a system with parasite transactions

Consider a history \(H\) of \(M\) generated in the following execution, similar to the one considered in Case 1 (initially, \(k = 1\); \(x\) is some \(q\)-variable initialized to 0):

1. The following steps are executed in parallel by all processes (e.g., in lockstep) until transaction \(T_{\sigma(k)}\) commits:

 a. Every transactions \(T_i, i = 1,\ldots,n - 1\), repeatedly executes operation \text{read} on \(x\) until \(T_i\) gets forcefully aborted.

 b. Transaction \(T_{\sigma(k)}\) repeatedly executes operation \text{read} on \(x\) until every transaction \(T_i, i = 1,\ldots,n - 1\), either gets forcefully aborted or returns from at least one \text{read} operation on \(x\) since \(T_{\sigma(k)}\) started. Then, \(T_{\sigma(k)}\) writes to \(x\) value \(1 - v\), where \(v\) is the value returned by the latest \text{read} operation of \(T_{\sigma(k)}\) on \(x\). Finally, \(T_{\sigma(k)}\) attempts to commit, i.e., \(T_{\sigma(k)}\) issues operation \text{tryC}(T_{\sigma(k)})\. Whenever \(T_{\sigma(k)}\) is forcefully aborted, \(T_{\sigma(k)}\) retrys the same operations.

2. Every transaction \(T_i, i = 1,\ldots,n - 1\), that has not been forcefully aborted in step 1a first finishes its current \text{read} operation on \(x\) (if any), then writes value \(1 - v\) to \(x\), and executes operation \text{tryC}(T_i). When every transaction \(T_i\) is forcefully aborted, go to step 1 with \(k \leftarrow k + 1\).

Assume that every transaction \(T_i, i = 1,\ldots,n - 1\), is executed by process \(p_i\), and all transactions \(T_{\sigma(k)}, k = n, n + 1,\ldots\), are executed by process \(p_n\) in \(H\). Assume also that \(\text{Parasite}(H) = \emptyset\). That is, there are no parasite transactions in \(H\).

We prove first that no sub-transaction \(T_{m}'\) in \(H\) can be blocked inside its first \text{read} operation on \(x\) (in step 1a or 1b) infinitely long. Assume otherwise—that some sub-transaction \(T_{m}' \in H\) invokes its first \text{read} operation on \(x\), executes infinitely many steps, but never returns from this operation. Then, every transaction in \(H\), including \(T_i\), is pending (by the construction of \(H\)), and no transaction \(T_k\) in \(H\) invokes operation \text{tryC}(T_k) or \text{tryA}(T_k) infinitely many times. Consider then a history \(H'\) that is identical to \(H\) but in which all transactions that execute infinitely many steps or events in \(H'\), except for \(T_i\), are parasite in \(H'\). Then, \(T_i\) is the only correct transaction in \(H'\), and so \(T_i\) cannot be pending in \(H'\). Hence, because the process executing \(T_i\) cannot distinguish between histories \(H\) and \(H'\), \(T_i\) cannot be pending in \(H\)—a contradiction.

Assume then, by contradiction, that, for some value \(k\), transaction \(T_{\sigma(k)}\) is pending in \(H\). We proved before that every sub-transaction in \(H\) always eventually returns from its first \text{read} operation on \(x\). Hence, \(T_{\sigma(k)}\) cannot execute infinitely many \text{read} operations on \(x\) in step 1b without being forcefully aborted infinitely many times. Hence, \(T_{\sigma(k)}\) does not have to be a parasite transaction. Every transaction \(T_i, i = 1,\ldots,n - 1\), either executes infinitely many steps while reading \(x\) in step 1a, or does not execute any further events after being forcefully aborted in step 1a. Hence, \(T_i\) can be a parasite transaction. Consider then a history \(H'\) identical to \(H\) except that all transactions \(T_1,\ldots,T_{n-1}\) are parasite in \(H'\). But then, \(T_{\sigma(k)}\) is, at some time \(t\), the only correct transaction in \(H'\). Hence, because \(L(\{T_{\sigma(k)}\}) = \{\{T_{\sigma(k)}\}\}\), \(T_{\sigma(k)}\) cannot be pending in \(H'\). Therefore, because process \(p_n\) cannot distinguish between histories \(H\) and \(H'\), \(T_{\sigma(k)}\) also cannot be pending in \(H\)—a contradiction.

We proved that the first \text{read} operation on \(x\) of every sub-transaction in \(H\) must eventually return. We also proved that no transaction \(T_{\sigma(k)}, k = n, n + 1,\ldots\), can be pending in \(H\), which means that every operation of \(T_{\sigma(k)}\)
eventually returns a response event. We prove now that every operation of any transaction \(T_i, 1 \leq i \leq n - 1 \), must eventually return a response event in \(H \). Assume otherwise—that some transaction \(T_j \) invokes an operation \(op \), executes infinitely many steps, but never receives a response from \(op \). By the construction of history \(H \), there must be then only finitely many transactions in \(H \), and no transaction \(T_k \) in \(H \) invokes operation \(tryC(T_k) \) or \(tryA(T_k) \) infinitely many times. Consider then a history \(H' \) that is identical to \(H \) except that in \(H' \) all transactions that execute infinitely many steps in \(H' \), except for \(T_j \), are parasite. Hence, eventually, at some time \(t \), \(T_j \) is the only correct transaction in \(H' \), and so \(T_j \) cannot be pending in \(H' \). This means, again, that \(T_j \) cannot be pending in \(H \), as process \(p_i \) cannot distinguish \(H \) from \(H' \)—a contradiction.

Finally, we need to prove that no transaction \(T_i, i = 1, \ldots, n - 1 \), commits. Assume otherwise—that some transaction \(T_m \), \(1 \leq m \leq n - 1 \), commits. Denote by \(T_m^1 \) the last sub-transaction of \(T_m \), i.e., the sub-transaction of \(T_m \) that ends with a commit event. Let \(T_{v(w)} \) be the latest transaction \(T_{v(k)}, k = 1, 2, \ldots \) that precedes \(T_m^1 \), and \(v_w \) be the value written to \(t \)-variable \(x \) by \(T_{v(w)} \). Until \(T_m \) reads \(x \) for the first time (in step 1a), there is no concurrent transaction that writes to \(x \). Hence, because \(M \) ensures opacity, \(T_m^1 \) must read \(v_w \) from \(x \) in its every read operation on \(x \). Then, \(T_m^1 \) writes value \(1 - v_w \) to \(x \) and commits.

Consider transaction \(T_{v(w+1)} \), which is concurrent to sub-transaction \(T_m^1 \) of \(T_m \). We already proved that \(T_{v(w+1)} \) must be committed in \(H \). Denote by \(T_{v(w+1)}^1 \) the last sub-transaction of \(T_{v(w+1)} \). Both \(T_m^1 \) and \(T_{v(w+1)}^1 \) read value \(v_w \) from \(x \) and write value \(1 - v_w \) to \(x \), and no nonconcurrent transaction to \(T_m^1 \) or \(T_{v(w+1)}^1 \) writes back value \(v_w \) to \(x \). Hence, there is no way to order sub-transactions \(T_m^1 \) and \(T_{v(w+1)}^1 \) so and opacity is violated—a contradiction. \(\square \)

Theorem 11 There does not exist any nonblocking \((n - 1)\)-prioritizing TM liveness property that can be implemented in any fault-prone system.

Proof. Let \(L \) be any nonblocking, \((n - 1)\)-prioritizing TM liveness property. Because \(L \) is \((n - 1)\)-prioritizing, there exists an infinite set \(C \subseteq T \) and a set \(P \subseteq C \) of size at most \(n - 1 \) such that \(P \cap S \neq \emptyset \) for every \(S \subseteq L(C) \). Let \(P' \) be any subset of \(C \) of size \(n - 1 \) that contains all elements in set \(P \). Clearly, \(P' \cap S \neq \emptyset \) for every \(S \subseteq L(C) \).

By contradiction, assume that there is a TM implementation \(M \) that ensures \(L \) in some fault-prone system. By Lemma 10, and because \(L \) is nonblocking, there exists a history \(H \) of \(M \) and a time \(t \) such that \(Correct_H(Concurr_H(t)) = C \) and all transactions from set \(P' \) are correct and pending in \(H \). But then, for every \(S \in L(C) \), \(P' \cap S \neq \emptyset \) and so \(Completed_H(C) \supseteq S \). Hence, history \(H \) of \(M \) violates \(L \)—a contradiction with the assumption that \(M \) ensures \(L \). \(\square \)

5 Ensuring Non-(n - 1)-Prioritizing TM Liveness Properties

In the previous section, we showed that TM liveness properties that are nonblocking and \((n - 1)\)-prioritizing are impossible to implement in any fault-prone system. In this section, we prove that every TM liveness property \(L \) that is not \((n - 1)\)-prioritizing, regardless of whether \(L \) is blocking or nonblocking, can be implemented in every fault-prone system. In fact, we prove that every such property \(L \) is weaker than global progress. We show then a TM implementation that implements global progress, and so also any weaker property, in a crash-prone system with parasite transactions.

Note that the OSTM [9] implementation also ensures global progress in any fault-prone system. However, we do not know if this has been formally proved. Hence, for completeness, we give here our own TM algorithm and prove that it indeed ensures opacity and global progress in presence of crashed and parasite transactions. The purpose of the TM we show in this section is only to prove our result—the TM is not meant to be practical or efficient. It is worth noting, however, that proving correctness of even such a simple TM implementation is a technical challenge.

Theorem 12 Every TM liveness property that is not \((n - 1)\)-prioritizing is weaker than \(L_G \).

Proof. Let \(L \) be any nonblocking TM liveness property. By contradiction, assume that \(L \) is not \((n - 1)\)-prioritizing and \(L \) is not weaker than \(L_G \).

Because \(L \) is not weaker than \(L_G \), there exists a history \(H \) such that \(H \) ensures \(L_G \) and \(H \) does not ensure \(L \). Because \(H \) does not ensure \(L \), there is a time \(t \) such that, if \(C = Correct_H(Concurr_H(t)) \), then \(Completed_H(C) \supseteq S \) for every \(S \in L(C) \). Note first that if \(C \) is a finite set, then \(L_G \) requires that all transactions in \(C \) are completed, i.e., that \(Completed_H(C) = C \). That is, if \(C \) is a finite set, then \(L \) cannot be violated in \(H \) at time \(t \). Hence, \(C \) is an infinite set. Denote by \(P \) the set of transactions in \(C \) that are pending in \(H \). Because \(H \) ensures \(L_G \) and because at most \(n \) transactions can be concurrent, the size of set \(P \) is at most \(n - 1 \). Clearly, all transactions in set \(C - P \) are completed in \(H \).

Let \(P' \) be any set such that \(P \subseteq P' \subseteq C \) and the size of \(P' \) is \(n - 1 \). Because \(L \) is not \((n - 1)\)-prioritizing, there exists an element \(S \in L(C) \) such that \(P' \cap S = \emptyset \). But then, because \(S \subseteq C \), set \(Completed_H(C) = C - P \supseteq C - P' \) is a superset of \(S \)—a contradiction. \(\square \)

An example TM implementation that ensures global progress in a crash-prone system with parasite transactions is shown in Algorithm 1. The intuition behind the algorithm is the following (a proof of correctness is in A). When a sub-transaction \(T_{m}^{l} \) executed by a process \(p_i \) invokes its first operation, \(p_i \) takes a snapshot of all current states of \(t \)-variables and stores those states in the next available slot of array \(S \) (lines 7–8). Process \(p_i \) searches for
Algorithm 1: A TM implementation that ensures L_g

(code for each process p_i; x_1, \ldots, x_K are t-variables implemented by the algorithm)

uses: $A[1, \ldots, n + 1]$—array of test-and-set objects,
$S[1, \ldots, n + 1][1, \ldots, K]$—array of shared variables,
C—unbounded compare-and-swap object (other variables are local to process p_i)

initially: $A[1] = 1$, $A[2, \ldots, n + 1] = 0$, $S[1][m]$ = the initial state of t-variable x_m (for
$m = 1, \ldots, K$, $C = (1, 1)$, slot$_{1i} = \bot$ (at every process p_i))

1 upon operation op on t-variable x_m by transaction T_k do
 2 if slot$_{1i} = \bot$ then
 3 slot$_{1i} = 1$;
 4 while $A[\text{slot}_1].\text{test-and-set} = 1$ do
 5 slot$_1 \leftarrow \text{slot}_1 + 1$;
 6 if $\text{slot}_1 > n + 1$ then return abort(T_k);
 7 $(\text{curr}_i, \text{ver}_i) \leftarrow C.\text{read}();$
 8 for $r = 1$ to K do $S[\text{slot}_1][r] \leftarrow S[\text{curr}_i][r]$;
 9 if $C.\text{read}() \neq (\text{curr}_i, \text{ver}_i)$ then return abort(T_k);
 10 return $S[\text{slot}_1][m].\text{op}$;
 11 upon tryA do
 12 return abort(T_k);
 13 upon tryC do
 14 if not $C.\text{compare-and-swap}((\text{curr}_i, \text{ver}_i), (\text{slot}_1, \text{ver}_1 + 1))$ then return abort(T_k);
 15 $A[\text{curr}_i].\text{reset}();$
 16 slot$_{1i} \leftarrow \bot$;
 17 return C_k;
 18 function abort(T_k)
 19 if slot$_1 \neq \bot$ and slot$_1 \leq n + 1$ then $A[\text{slot}_1].\text{reset}();$
 20 slot$_1 \leftarrow \bot$;
 21 return A_k;

an available slot s by scanning array A of test-and-set objects4 (lines 4–6). If $A[s] = 1$, then slot s is being used by some process, and exclusive to this process; otherwise it is available. Once p_i verifies that the snapshot is consistent (line 9), p_i can execute all subsequent operations of T_k^i on the snapshot.

If T_k^i invokes operation tryC(T_k), then p_i tries to atomically change the current snapshot by updating the value (state) of compare-and-swap object5 C to point to the slot of p_j in array S (line 14). The update will be successful only if no other process committed a transaction concurrently to T_k^j. If p_i succeeds in updating C, p_i releases the slot of S that contains the old snapshot of t-variable states (the one p_i read at the beginning of sub-transaction T_k^j). Otherwise, p_i releases its own slot.

By proving correctness of Algorithm 1 in Appendix A, we prove thus the following theorem:

Theorem 13 There is a TM implementation that ensures global progress in every fault-prone system.

Corollary 14 Global progress is the strongest nonblocking TM liveness property that can be ensured by any TM in any fault-prone system.

6 Discussion

This paper is the first step towards determining how much liveness a TM implementation can ensure. We define precisely the notion of a TM liveness property, and show a precise boundary between those TM liveness properties that can be implemented in system with crashed and/or parasite transactions, and those ones that are impossible to implement in such a system. As we pointed out in the introduction, these are preliminary steps towards understanding TM liveness. In the following, we discuss our results, and present some open questions.

Practical perspective Local progress is an important property—it guarantees freedom from starvation of every process in the system. Other practically relevant nonblocking and $(n - 1)$-prioritizing properties, besides local progress, may, e.g., guarantee progress for all transactions with certain priority. Our results imply that ensuring any such TM liveness property inherently requires processes to wait for each other. This means, for instance, that ensuring worst-case liveness, such as local progress, may hamper the average-case performance of a TM.

Ensuring local progress without making transactions wait for each other is possible if transactions are static and predefined. That is, if, upon the first event of a transaction T_i, the TM implementation knows exactly which operations, on which t-variables T_i will execute, our impossibility result does not hold. However, assuming static transactions may often be too limiting for an application.

Dissecting the “grey area”

The class of TM liveness properties that are $(n - 1)$-prioritizing and blocking is a “grey area”. It contains properties that are implementable, and properties that are impossible to implement in a system with faulty transactions.

There are many TM liveness properties in this “grey area”, which are $(n - 1)$-prioritizing and nonblocking if

4A test-and-set object implements operations: (1) test-and-set that atomically reads the state of the object, changes the state to value 1, and returns the state read, and (2) reset that sets the state of the object to 0.

5A compare-and-swap object implements an operation $\text{compare-and-swap}(v, v')$ that atomically changes the state of the object from value v to v'; the operation returns true if the change was successful, and false otherwise. It is also possible to read the state of a compare-and-swap object.
the set of all transactions is restricted to some infinite subset of set T. It is straightforward to see that all those properties are impossible to implement in any fault-prone system. It is also easy to show that all TM liveness properties that guarantee progress only for transactions from some finite subset of set T are weaker than global progress, and are thus implementable in any fault-prone system. Those two groups of properties probably include all properties from the “grey area” that can potentially be of any practical relevance. Hence, we believe that dissecting the class of $(n - 1)$-prioritizing and blocking properties further makes little sense.

Complexity An interesting future direction is related to complexity. Indeed, we showed which TM liveness properties are possible to implement in a system with crashes and/or parasite transactions. However, the inherent cost, in terms of time and space complexity, of ensuring all those properties might not necessarily be the same, and this cost can also differ depending on how many transactions can crash or be parasite in a given system. Whether it is indeed the case is an open question.

References

A Proof of Correctness of Algorithm 1

Denote Algorithm 1 by M. We prove that M ensures opacity and global progress in a crash-prone system with parasite transactions.

Opacity Let H be any history of M. Observe first that each object $A[s]$ acts as a lock for the shared variables $S[s][1, \ldots, K]$. That is, if a sub-transaction T_{k}^{l} is returned 1 from operation test-and-set invoked in line 4 on object $A[s]$, then no other sub-transaction can modify any variable $S[s][1, \ldots, K]$ until T_{k}^{l} executes line 15 or line 19. Hence, variables $S[s][1, \ldots, K]$ can be thought of as local to T_{k}^{l} during all operations of T_{k}^{l} return values different than A_{k} and C_{k}.

Therefore, we can view any sub-transaction T_{k}^{l} (executed by a process p_{l}) in H as a sequence of read operations on all t-variables (reading $S[c_{k}[u]][1, \ldots, K]$ in line 8), and a sequence of one or more write operations on every t-variable x_{m} (writing $S[slot][m]$ in line 8 and line 10). Hence, T_{k}^{l} first reads from every t-variable x_{m}, then writes to every t-variable x_{m}, and then writes to some t-variables. Without loss in generality, we can assume that each value written to a t-variable is unique, i.e., that we can identify the writer of each t-variable value read by a transaction. We prove that H ensures opacity by using the graph characterization of opacity introduced in [11].

Let Q denote the set of sub-transactions in H that received value true from the compare-and-swap operation executed in line 14. (Clearly, every sub-transaction that is committed in H is in Q.) Let Q' denote the set of non-committed sub-transactions in Q.

Let T_{k}^{l} be any sub-transaction executed by any process p_{l}. Denote by c_{k}^{l} and v_{k}^{l} the values of variables $curr_{r}$ and ver_{r} read by p_{l} in line 7 within the first operation of T_{k}^{l} (assume $v_{k}^{l} = \infty$ if T_{k}^{l} has not executed line 7 within its first operation in H). Let \ll be any total order on sub-transactions in H such that, for every two sub-transactions T_{k}^{m} and T_{k}^{l} in H, if (1) $T_{k}^{m} \in Q$ and $v_{k}^{m} < v_{k}^{l}$, (2) $T_{k}^{l} \in Q$ and $v_{k}^{m} \leq v_{k}^{l}$, or (3) T_{k}^{m} precedes T_{k}^{l} in H, then $T_{k}^{m} \ll T_{k}^{l}$. It is straightforward to see that such a total order exists. Indeed, (1) if T_{k}^{m} precedes T_{k}^{l} in H then $v_{k}^{m} \leq v_{k}^{l}$, if $T_{k}^{m} \not\in Q$, or $v_{k}^{m} < v_{k}^{l}$ if $T_{k}^{m} \in Q$, and (2) if $v_{k}^{m} = v_{k}^{l}$, then T_{k}^{m} and T_{k}^{l} cannot be both in Q (i.e., they cannot be both returned true in line 14).

Let G be the opacity graph $OPG(H, \ll, Q')$. History H ensures opacity if, and only if, G is well-formed and acyclic. (For the definitions of the terms we use here, refer to [11].)

Claim 15 If the state of object C is $(c, v) \neq (1, 1)$ at some time t, then every value in $S[c][1, \ldots, K]$ at time t has been written by a sub-transaction that was returned value true in line 14 before t.

Proof. The claim trivially holds while $C = (1, 1)$, i.e., C is in its initial state. Assume that the state of C at some time t is (c, v), and that every value in $S[c][1, \ldots, K]$ at time t is indeed a value written by some sub-transaction T_{k}^{l} that was returned value true in line 14 before t. Let t' be at time at which the state of C is changed by some sub-transaction T_{w}^{u} from (c, v) to (c', v'). Because variables $S[c][1, \ldots, K]$ are all written to by T_{w}^{u} and cannot be changed by any other sub-transaction until time t', and because T_{w}^{u} must be returned value true in line 14 before t', the claim also holds at t'.

Let then t'' be any time between t and t'. Sub-transaction T_{k}^{l} must have set the state of $A[c]$ to 1, and T_{w}^{u} could not change $A[c]$ thereafter. The state of $A[c]$ can be changed only by a sub-transaction that changes the state of C. Hence, $A[c] = 1$ at t''. But then no sub-transaction can have its slot variable equal to c at t'', and so no sub-transaction can change any value in $S[c][1, \ldots, K]$ at time t''. Hence, the claim holds also at t'' and, by extension, at any time.

By contradiction, assume that G is not well-formed. That is, there is a sub-transaction T_{k}^{l} that reads some value q from some register $S[c^{l}_k][m]$, and q is written to $S[c^{l}_k][m]$ by some sub-transaction T_{w}^{u} that is not in set Q. But then, because T_{w}^{u} reads c_{k}^{l} in line 7, and by Claim 15, T_{w}^{u} must be in set Q—a contradiction.

By contradiction, assume that there is a cycle L in G. Hence, there are some two sub-transactions T_{k}^{l} and T_{w}^{u} such that $T_{k}^{l} \ll T_{w}^{u}$ and there is an edge from T_{w}^{u} to T_{k}^{l}. Clearly, the edge cannot be labelled L_{rt} because if T_{w}^{u} precedes T_{k}^{l} in H, then $T_{w}^{u} \ll T_{k}^{l}$.

Assume that T_{k}^{l} reads from some variable $S[c_{k}^{l}][m]$ value q that is written by T_{w}^{u}. Hence, T_{w}^{u} must be in set Q. Clearly, it is impossible that T_{k}^{l} precedes T_{w}^{u}, as then T_{k}^{l} would read q before T_{w}^{u} event starts. But then, by Claim 15 and because T_{w}^{u} increases the version number of C when T_{w}^{u} executes line 14, $v_{k}^{u} < v_{k}^{l}$—a contradiction with the assumption that $T_{k}^{l} \ll T_{w}^{u}$.

Assume then that there is an edge labelled L_{ww} from T_{w}^{u} to T_{k}^{l}. That is, T_{w}^{u} is in set Q, and there is a sub-transaction T_{k}^{l} in H such that $T_{w}^{u} \ll T_{k}^{l}$, and T_{k}^{l} reads from some variable $S[c_{k}^{l}][m]$ a value q that is written to $S[c_{k}^{l}][m]$.
by T_k^i. Observe first that if $v_x^z = v_{w_i}^z$, then T_k^x cannot be in set Q. Hence, because $T_{w_i}^u \ll T_k^x$, $v_{w_i}^u < v_x^z$. Because T_k^x reads value q that is written by T_k^i, sub-transaction T_k^i must be in set Q and T_k^i must execute line 14 after $T_{w_i}^u$ executes line 14. But then, v_k^i must be larger than $v_{w_i}^u$—a contradiction with the assumption that $T_k^i \ll T_{w_i}^u$.

Global progress By contradiction, assume that there is a history H of M that violates global progress. That is, there is a time t, such that every transaction from set $C = \text{Correct}_H(\text{Concurr}_H(t))$ is pending in H (and $C \neq \emptyset$). Hence, no transaction completes after t.

Let T_k be any transaction in C, executed by some process p_i, and T_{k}^m be any sub-transaction of T_k that invokes its first operation after t. Observe first that T_{k}^m cannot be blocked by M inside any operation infinitely long. Hence, because T_k is a correct transaction, T_{k}^m must be forceably aborted.

Let c_{k}^m be the value read by p_i executing T_{k}^m from object C in line 7. Because no transaction completes after time t, no process changes the state of object C after t. Hence, when T_{k}^m reaches line 14, C still contains value c_{k}^m. Therefore, T_{k}^m cannot abort in line 6 and T_{k}^m must be returned true from operation compare-and-swap in line 14, and so T_{k}^m cannot be forceably aborted—a contradiction.