On Obstruction-Free Transactions

Rachid Guerraoui Michał Kapałka

EPFL, Switzerland

Transactional Memory

```
atomic {
     accountA . debit(sum)
     accountB . credit(sum)
}
```

TM Research

SI-STM	TL2	OSTM	RSTM	Haskell STM
	NZTM	LSA	-STM	TinySTM
DSTM2	DSTM	ASTM	SXM	JVSTM

TM Research

What is inherent to TM?

Fundamental Questions

Fundamental Questions

Fundamental Questions

Focus

Obstruction-Free TM (OFTM)

DSTM, ASTM, SXM, RSTM, NZTM, ...

Why OFTM?

Advantages: ⇒ real-time, OS

- No priority inversion
- Fault tolerance
- Can provide strong guarantees

Additional overheads:

- Do not matter in complex workloads (see our Transact'08 paper)
- Can be reduced (see NZTM)

Obstruction-free TM (OFTM) **Power** Consensus number = 2

The Rest of This Talk

Defining OFTM

Definition

Intuitive Definition

"A synchronization mechanism is obstruction-free if any thread that runs by itself long enough makes progress (...)"

[Herlihy et al. 03]

Basic Definition

$$t_1$$
 \vdash commit t_2 \vdash t_3 \vdash t_4

OFTM: if *T* encounters no **step contention**, *T* cannot be aborted

Other Definitions

$$t_1$$
 \xrightarrow{T} commit t_2 $\xrightarrow{}$ t_3

ic-OFTM: if *T* encounters no **interval contention**, *T* cannot be aborted

Other Definitions

$$t_1$$
 t_2 t_3 t_4 t_4 t_4 t_5 t_6 t_7 t_8 t_8 t_9 t_9

eventual if *T* encounters no **interval contention**, **ic-OFTM:** *T* **eventually** cannot be aborted

Definition Equivalence

In an asynchronous system:

OFTM = ic-OFTM

ic-OFTM equivalent to eventual ic-OFTM

(proof uses "fail-only" consensus)

Power

Consensus Number

Object X has consensus number K

One can implement wait-free consensus from *X* for at most *K* processes

"Fail-Only" Consensus

- No two processes decide different values.
- A value decided must be a value proposed by some propose that does not fail.
- Fail only on step contention.

"Fail-only" consensus → OFTM

Use of CAS

1. Object acquisition

2. Committing/aborting a transaction

Challenge

"Fail-only" consensus is:

One-shot

Not readable

Summary

What is inherent to TM?