The Semantics of Progress in Lock-Based Transactional Memory

Rachid Guerraoui Michał Kapałka

EPFL, Switzerland
Transactional Memory
Transactional Memory

thread 1 T_1 commit

thread 2 abort
Practice

DSTM, SXM, TL2, RSTM, JVSTM, NZTM, Haskell STM, TinySTM, McRT-STM, BartokSTM, SwissTM, …
Practice

DSTM, SXM, TL2, RSTM, JVSTM, NZTM, Haskell STM, TinySTM, McRT-STM, BartokSTM, SwissTM, …

semantics, inherent limitations

Theory
Semantics
of
Transactional Memory
2 aspects
correctness condition

nothing bad happens
correctness condition

opacity

nothing bad happens
progress property

something good happens
progress property:

When can a transaction be aborted?
progress property

something good happens

obstruction-freedom [SPAA’08]
progress property

lock-based TMs?

something good happens

this talk
Lock-Based TM Implementation

T

read

write

try-lock A

try-lock B

TM implementation
progress property

lock-based TM = ensures strong progressiveness

something good happens
Strongly progressive TMs
TL2, TinySTM, RSTM, BartokSTM, McRT-STM, ...
Contributions

Lock-based TMs

- progress semantics
 - strong progressiveness
Contributions

Lock-based TMs

- progress semantics
- strong progressiveness
- ≡ strong try-lock
- consensus #2
Contributions

Lock-based TMs

- progress semantics
- ≡ strong try-lock
- reduction

- strong progressiveness
- consensus #2
- proving progress
Reduction

T_1

T_2

TM implementation

try-lock A

try-lock B

A

B
Contributions

Lock-based TMs

\[\equiv\text{ strong progressiveness}\]
\[\equiv\text{ try-lock}\]
\[\equiv\text{ consensus #2}\]
\[\equiv\text{ proving progress}\]
\[\equiv\text{ exponential space with invisible reads}\]
Inherent Complexity

\[T \]

\[\Omega \left(e^k \right) \]

shared memory

TM implementation

A
B

k
Strong Progressiveness
If a group of concurrent transactions conflict on at most 1 object, then 1 of those must commit.
Example 1

$T_1 \quad \text{commit}$
Example 2

T_1——commit——T_2
Example 3

T_1

A

B

write

T_2

C

T_3

commit or commit or commit
Strong Progressiveness

If a group of concurrent transactions conflict on at most 1 object, then 1 of those must commit.
If a group of concurrent transactions conflict on at most 1 object, then 1 of those must commit.
In the Paper...

Lock-based TMs

- progress semantics
 - strong progressiveness

- \(\equiv \) strong try-lock
 - consensus #2

- reduction
 - proving progress

- inherent limitation
 - exponential space with invisible reads
How much progress can a TM ensure?